Research

实时的原位Meltpool分析和用于防止金属3D打印缺陷的数字双胞胎方法

2021 3D Printing Industry Awards候选名单愿意投票,现在就有发言权。确保收看live stream of the event在我们的YouTube channel

一群来自内布拉斯加州林肯大学,,,,Drexel University,,,,纳瓦霍技术大学,,,,andSigmaLabs已经开发了一个新的过程,用于检测使用数字双胞胎的激光粉床融合(LPBF)3D打印零件。

在新论文中,该团队概述了一种数字双胞胎策略,该策略集成了物理和数据,以在LPBF打印过程中形成缺陷的实时检测。通过将原位融化温度测量与计算预测相结合,研究人员能够检测并鉴定不锈钢叶轮中的三种不同类型的缺陷。

这goal of the study was to address concerns around the process’ tendency to create flaws in order to make it suitable for precision-driven industries like aerospace and biomedicine, while protecting against cybersecurity threats such as process tampering.

研究人员的物理和数据综合数字双胞胎策略。图像通过材料和设计。
这researchers’ physics and data integrated digital twin strategy. Image via Materials & Design.

LPBF期间的缺陷形成

尽管可以实现几何自由以及大量的成本和时间节省LPBF 3D打印,但迄今为止,高精度行业(如航空航天和医疗)一直犹豫不决,因为它倾向于造成缺陷,因此采用该技术来制造安全至关重要的部位。

网络安全风险不仅在LPBF内部,而且在其他3D打印过程中也成为了另一个新兴的关注,恶意党派可能能够篡改过程参数和零件内的植物缺陷,以损害其性能。

正在进行越来越多的研究来解决这些问题,并减少了LPBF过程中缺陷的机会。这某些金属中微裂纹的原因为了改善过程而进行了调查,effects of beam-shaping

德克萨斯州A&M,,,,in particular, has carried out a lot of work in this area, having worked with阿贡国家实验室to deploy machine learning to预测3D打印零件中的缺陷,还建立一个LPBF“速度限制”at which defects such as J-shaped bubbles are less likely to form on 3D printed parts.

Just last month, Texas A&M scientists introduced a universal method ofLPBF3D printing flawless metal parts基于单轨打印数据和机器学习。该团队声称,其方法比现有参数优化的方法更便宜,耗时且更简单,因此非常适合航空航天,汽车和国防应用。

Cross section of an impeller showing the three build sections - base, mid, and fin - that the researchers used to test their digital twin. Image via Materials & Design.
Cross section of an impeller showing the three build sections – base, mid, and fin – that the researchers used to test their digital twin. Image via Materials & Design.

数字双胞胎方法

Flaws tend to be formed during LPBF processes as a result of thermal occurrences during the melting, cooling, solidification, and remelting of powder by the laser. At the micro-scale, the melting of the powder creates a wake of molten material, called the meltpool, within which the temperature distribution, flow, and spatter influence the part’s microstructure, porosity, and cracking.

在宏观尺度上,激光的快速扫描作用和高温下材料的连续熔化会导致加热和冷却周期,从而导致残留应力和部分变形。

为了解决这个问题,最新的研究旨在制定和应用数据和物理综合策略,以在线监视和检测LPBF零件中的缺陷形成。为此,团队已将原位融化温度测量与热模拟模型相结合,该模拟模型迅速预测了零件中的温度分布。

根据研究人员的说法,他们的方法的新颖性在于该模型提供的温度分布预测,这些预测是通过原位融化温度测量值逐层更新的。因此,科学家将其方法称为检测缺陷形成的“数字双胞胎”方法。

Digital Twin策略能够提供用于校正零件异常的反馈,从而减少了失败的构建中的废物。研究人员将其策略作为纯粹数据驱动的过程监视技术的替代方法,以克服这些过程的缺点,即延误检测,数据驱动模型的普遍性差,可以分配形状以及资源密集型和资源密集型获取数据的性质。

此外,由于数字双胞胎既包含零件形状对热史的宏观效果,又包含激光材料相互作用的微尺度效应,以融合池温度的形式,因此它可以弥补不同处理参数的效果,例如扫描图案,舱口间距,激光功率和速度。

这on-axis sensing setup installed on an EOS M290 LPBF system. Image via Materials & Design.
这on-axis sensing setup installed on an EOS M290 LPBF system. Image via Materials & Design.

测试数字双胞胎

为了测试他们的方法,3D团队使用EOS M290LPBF系统具有不同类型的缺陷,涵盖了过程漂移,镜头分层和网络侵入。为了造成缺陷,研究人员在处理参数上进行了更改,引发了与机器相关的故障,并故意篡改了该过程以在零件内部创建缺陷。

该团队选择打印叶轮零件以证明其数字双胞胎,因为它可以分为沿构建方向的三个不同区域 - 基础,中和鳍部分。这些部分中的每一个都包含了具有挑战性的复杂特征,例如泪珠形的内部冷却通道,这导致层之间的冷却时间各不相同,随后是复杂的热历史记录。

During the build, the process was monitored continuously using an array of three coaxial photodetectors integrated into the laser path. Signals obtained from the sensor array were processed to create two types of measurements, namely thermal energy planck (TEP) and thermal energy density (TED). The TEP signature was correlated to the meltpool temperature, while TED captured the broadband chamber radiation.

然后将这些签名纳入图理论模型中,以在整个过程中连续使用Meltpool的微尺度活动对其进行更新。

Measuring the meltpool temperature using emissions from a bandpass-filtered photodetector. Image via Materials and Design.
Measuring the meltpool temperature using emissions from a bandpass-filtered photodetector. Image via Materials and Design.

这digital twin was able to detect all three types of flaw in the 3D printed impeller parts during the LPBF process. According to the researchers, the results demonstrated that the method enabled precise and interpretable detection of flaw formation as opposed to the use of sensor data alone. To this end, the digital twin approach overcomes the need for transferring sensor signatures to a separate data analysis algorithm, and therefore prevents delays in detecting flaws.

展望未来,团队将寻求扩展其数字双胞胎的功能,以检测其他类型的缺陷,例如失真。他们还将通过不同的处理参数,扫描策略和部分形状测试该方法。

Further information on the study can be found in the paper titled:“数字化的二添加添加剂制造:通过将热模雷电竞充值拟与原位Meltpool传感器数据相结合来检测激光粉床融合中的缺陷,”published in the Materials and Design journal. The study is co-authored by R. Yavari, A. Riensche, E. Tekerek, L. Jacquemetton, H. Halliday, M. Vandever, A. Tenequer, V. Perumal, A. Kontsos, Z. Smoqi, K. Cole, and P. Rao.

这concept of the digital twin applied to practical impeller-shaped parts. Image via Materials & Design.
这concept of the digital twin applied to practical impeller-shaped parts. Image via Materials & Design.

订阅3D打印行业通讯有关增材制造中的最新消息。雷电竞充值您也可以通过关注我们来保持联系推特并喜欢我们Facebook。

Looking for a career in additive manufacturing? Visit3D打印作业在行业中选择一系列角色。

订阅我们YouTube channel有关最新的3D打印视频短裤,评论和网络研讨会重播。雷竞技在线登录

Featured image showsthe researchers’ physics and data integrated digital twin strategy. Image via Materials & Design.