研究

Concordia研究人员开发“改变游戏规则”的超声3D打印技术

来自康科迪亚大学已经开发了一种新颖的直接声音打印(DSP)技术,该技术利用超声波来制造复杂而精确的物体。

该团队发表了一篇描述该技术的论文,该论文通过使用声波来在微小腔中创建超声反应,以产生预先设计的复杂几何形状,而现有技术无法实现。

“Ultrasonic frequencies are already being used in destructive procedures like laser ablation of tissues and tumors,” said Muthukumaran Packirisamy, a Professor in Concordia’s Department of Mechanical, Industrial and Aerospace Engineering. “We wanted to use them to create something.”

超声波3D打印

超声在微颗粒操作中的使用并不是一个新概念,超声波已被证明是过去3D打印的多个区域的有用工具。

The last few years have seen researchers from theUniversity of Bathand the布里斯托尔大学发展他们Sonolustroghy生物打印技术that uses ultrasound waves to precisely deposit particles into predetermined patterns, and biotechnology firmmimiX Biotherapeuticslaunch its owncymatiX acoustic bioprinterthat leverages ultrasonic waves to pattern and condense living cells via resonance.

超声也用于后处理应用程序的后处理应用程序制造商PostProcess Technologies,发起了它的可变的声学位移(VAD) technology in 2020. VAD uses acoustic energy to non-destructively remove loose powder from 3D printed polymer parts.

Concordia大学DSP技术的概念。通过自然通信图像。
Concordia大学DSP技术的概念。通过自然通信图像。

DSP 3D printing

Concordia团队的DSP技术依赖于悬浮在液体聚合物溶液中的微小气泡内部的波动压力引起的化学反应。为了产生这些反应,研究人员利用振荡的焦距超声波将聚二甲基硅氧烷(PDMS)液体树脂转化为固体或半固体形式。

该团队使用换能器生成一个超声波场,该电场通过材料的外壳,并在将其沉积到平台或其他先前固化的物体上,并巩固目标液体树脂。

The ultrasound waves cause extremely intense and short reactions within the micro-sized bubbles in the liquid, causing the temperature inside the cavities to shoot up to around 15,000 kelvin and the pressure to exceed 1,000 bar. Considering the Earth’s surface pressure at sea level is around one bar gives an indication as to the extreme pressure within the bubbles. As a result, the reaction time is so brief it only lasts a matter of picoseconds, one of which makes up just one trillionth of a second, and does not affect the surrounding material.

为了创建所需的形状,换能器沿着预定的路径移动,通过像素固化液体像素。可以通过调整超声波频率的持续时间和所使用材料的粘度来控制对象的微结构。

该团队将他们的方法描述为3D打印行业的“改变游戏规则”,因此能够生成具有预先设计的复杂几何形状的对象,而现有技术无法实现。

“We found that if we use a certain type of ultrasound with a certain frequency and power, we can create very local, very focused chemically reactive regions,” said Mohsen Habibi, a Research Associate at Concordia’s Optical-Bio Microsystems Lab. “Basically, the bubbles can be used as reactors to drive chemical reactions to transform liquid resin into solids or semi-solids.”

平台上超活动微反应器(UAMR)内的多孔和透明打印观察。通过自然通信图像。
平台上超活动微反应器(UAMR)内的多孔和透明的打印观察。通过自然通信图像。

多功能和特定应用

根据Concordia团队的说法,其DSP技术的多功能性将对依赖高度特定和精致设备的行业有利。例如,PDM已被广泛用于微流体部门,制造商需要受控环境和精致技术来制造医疗设备和生物传感器。

该团队建议,在更广泛的医疗领域,该技术可能会在人类和动物内部的远程体内3D印刷中持有医疗应用。

DSP还适用于航空航天部门内的工程和维修应用,因为技术所依赖的超声波能够穿透金属壳等不透明的表面。因此,该技术可以使维护人员能够为飞机机身内部的零件提供服务,否则这些零件对于其他依靠光活化反应的其他3D打印技术将无法接近。

“We proved that we can print multiple materials, including polymers and ceramics,” added Packirisamy. “We are going to try polymer-metal composites next, and eventually we want to get to printing metal using this method.”

有关该研究的更多信息可以在标题为:“直接的声音打印”,published in the Nature Communications journal. The study is co-authored by M. Habibi, S. Foroughi, V. Karamzadeh, and M. Packirisamy.

DSP的潜在应用。通过自然通信图像。
DSP的潜在应用。通过自然通信图像。

订阅3D打印行业newsletter有关增材制造中的最新消息。雷电竞充值您也可以通过关注我们来保持联系Twitterand liking us onFacebook.

寻找添加剂制造业的职业?雷电竞充值访问3D Printing Jobsfor a selection of roles in the industry.

Subscribe to ourYouTube频道for the latest 3D printing video shorts, reviews, and webinar replays.

特色图片显示the concept of Concordia University’s DSP technology. Image via Nature Communications.